Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Blurring and sharpening are fundamental image processing techniques used in computer vision. With OpenCV, we can easily apply these effects to images to enhance or smooth details instantly.
Step 1: Install Required Libraries
Ensure OpenCV is installed:
pip install opencv-python numpy
Step 2: Import Libraries and Load Image
import cv2
import numpy as np
# Load an image
image = cv2.imread(“image.jpg”)
Step 3: Apply Blurring Techniques
Blurring helps reduce noise and smooth images. OpenCV provides multiple methods for blurring:
- Gaussian Blur
blurred_gaussian = cv2.GaussianBlur(image, (15, 15), 0)
- Median Blur
blurred_median = cv2.medianBlur(image, 5)
- Bilateral Filter (Preserves Edges)
blurred_bilateral = cv2.bilateralFilter(image, 9, 75, 75)
Step 4: Apply Sharpening Techniques
Sharpening enhances edges and details in an image. We can achieve this using kernel filtering.
Define a Sharpening Kernel
sharpen_kernel = np.array([[0, -1, 0],
[-1, 5,-1],
[0, -1, 0]])
sharpened_image = cv2.filter2D(image, -1, sharpen_kernel)
Step 5: Display Results
cv2.imshow(“Original Image”, image)
cv2.imshow(“Gaussian Blur”, blurred_gaussian)
cv2.imshow(“Median Blur”, blurred_median)
cv2.imshow(“Bilateral Blur”, blurred_bilateral)
cv2.imshow(“Sharpened Image”, sharpened_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
Conclusion
Blurring and sharpening are essential techniques in image processing. OpenCV provides powerful functions to easily apply these effects, enhancing images for better visual representation and analysis.